Urban Landcover Mapping to Aid Regional Assessments of Greenhouse Gases E. Natasha Stavros Willow Coleman, Kristal Verhulst, Nick Parazoo, Vineet Yadav Jet Propulsion Laboratory, California Institute of Technology February 19th, 2019 ### Background - Fossil fuel emissions of greenhouse gases from cities account for 70% of global anthropogenic emissions (Le Quere et al., 2013) - Unknown influence of urban vegetation on city-scale attribution (Hutyra et al., 2014), but it could be up to 20% of total CO₂ flux (Miller et al., in prep) - Current landcover maps either: - Do not cover the full extent needed to adequately parameterize regional flux inversion models, or - Are not at a fine enough spatial resolution #### Example 2016 Leaf-On 1m NAIP Imagery Building Footprints from Microsoft and Open Street Maps (Orange) Initial Impervious Surface Mask Black = impervious surface White = other (vegetation, NPV, water, etc.) # Example Region of Interest (Santa Ana Cemetery) ## Region of Interest (Mixed Use Development in Orange, CA) Statistics of Road and Roof: two box plots of NDVI, one for roads and one for roofs from the actual polygon and add text to plot that says the recall above each PLACE HOLDER #### Potential Applications - Energy sector greenhouse gas attribution - Land Use Programs - Tree Planting - Grass Conversion